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ABSTRACT 

 
In this paper the cybernetic theory of finite-state machines is applied to the problem of S-R compatibility in the 
UAV Camera Directory Task.  It is shown that finite-state machines can be empirically tested by contingency tables 
in which symbols of an input alphabet (rows) are mapped on symbols of an output alphabet (columns) and each state 
is represented as a different layer of cross-classification.  Information theory provides a natural formalism to quan-
tify the information load of a finite-state machine.  

 
In remote aviation, problems with communication and  

stimulus-response incongruities often stem from the fact that 
the different members of the UAV team are looking at differ-
ent monitors, where each monitor has a unique perspective or 
reference frame.  This paper will focus on the cognitive prob-
lem the camera operator faces when required to translate an 
ego-referenced perspective into that of the UAV perspective, 
where the effects of input actions are defined in relation to the 
roll (or longitudinal) axis of the UAV.  If the UAV camera 
operator does not succeed in taking the UAV perspective into 
account, the behavior of the UAV camera may appear quite 
unpredictable.  For example, let us assume the UAV is flying 
alongside the Y-axis of his computer monitor and the UAV 
camera is in the same direction as the UAV roll axis.  Then, 
the effect of an input action, say, forward, is to move the 
scanned spot further up alongside the Y-axis.  However, when 
the UAV is flying alongside the X-axis, say, eastward, the 
same input action now causes the camera to move along the 
X-axis.  Thus, the same input action corresponds with more 
than one output action.   

In this paper we will describe the task of operating the 
UAV camera as an abstract machine, a formalism derived 
from cybernetic theory (Davis, Sigal, & Weyuker, 1994; 
Denning, Dennis, Qualitz, 1978; Minsky, 1967).  For our pur-
pose the class of transducer machines is of particular rele-
vance.  A transducer is a machine that translates sequences of 
symbols chosen from an input alphabet into corresponding 
sequences of symbols from an output alphabet.  In the case of 
the Camera Directory Task, let the input alphabet consist of 
four symbols, that is, four arrow keys (i.e., the input alphabet I 
= {←, →, ↑, ↓}. Verbally, these input actions may be labeled 
as follows: left and right (turn the UAV camera), forward and 
back (change the angle of descend and thus move the scanned 
area further away or more nearby the UAV).  The output ac-
tions that make up a finite output alphabet consist of the set of 
physical transformations of the UAV camera.  Since the per-
spective of the UAV camera operator is the computer moni-

tora, it is convenient to define the UAV camera operations in 
terms of X- and Y-coordinates of the areas being scanned.  For 
ease of exposition we will assume a finite set of discrete UAV 
operations, that is, movements across the X- or Y-axis (i.e., x+, 
x–, y+, and y–) and rotations in discrete units of 90 degrees 
clockwise or counterclockwise.  These rotations will be de-
noted as r+ and r–, respectively.  Thus, the entire output al-
phabet of UAV camera operations is represented by the set O 
= {x+, x–, y+, y–, r+, r–}.   

The apparently incoherent mapping of input symbols 
onto output symbols can be understood if we consider the 
UAV camera as a transducer machine with a finite number of 
states.  The set of states Q corresponds to the directions of the 
UAV camera (i.e., 0, 90, 180, and 270 degrees of angular dis-
parity with the Y-axis on the monitor).  The behavior of this 
finite-state machine depends on the functions g and h.  The 
function g is the so-called next-state function and is defined 
over input alphabet I and set of states Q.  For any q, q′ ∈ Q 
and s ∈ I, we write g (s, q) → q′, that is, input s takes state q 
into state q′.  For each q, the finite-state system produces a 
different function from input alphabet to output alphabet.  This 
is the so-called next-output function: 

 
h (s, q) → o     (1)   
 

that is, given an input symbol s and a state q an output o is 
produced.  As the functions g and h consist of finite sets of 
productions, the finite-state machine can be specified com-
pletely as a simple table (see Table 1).  The four states (i.e., 
the possible directions of the UAV camera) have been labeled 
q1, q2, q3, and q4.  Upon starting the machine, one of these 
states will be initialized as the initial state, usually denoted by

                                                           
a The monitor displays a 2-D map with a north-up alignment, 
also showing the current position and direction of the UAV.  
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Table 1.  Transition function of the finite-state machine modeling the UAV Camera Directory Task 

 present state: 

 q1 q2 q3 q4 

input: next 

state 

next 

output 

next 

state 

next 

output 

next 

state 

next 

output 

next 

state 

next 

output 

↑ q1 y+ q2 x+ q3 y– q4 x– 

↓ q1 y– q2 x– q3 y+ q4 x+ 

← q4 r– q1 r– q2 r– q3 r– 

→ q2 r+ q3 r+ q4 r+ q1 r+ 

Note: The symbols q1, ..., q4 denote the states of the finite-state machine.  The output symbols r+ and r– denote clockwise and counterclockwise  
rotations, respectively.  The x’s and y’s represent changes over the X- and Y-axis, respectively.  

 
qI.  In the UAV Camera Directory task the initial state is the 
direction that is in alignment with the UAV roll axis.  This 
finite-state machine accepts four input symbols ←, →, ↑, and 
↓.  The inputs ↑, and ↓ leave the current state unchanged, 
while the symbols ← and → cause a change of state.  Table 1 
specifies a deterministic finite-state machine, which produces 
for every combination of a state q and an input symbol s, one 
and only one output symbol o.   
 It can be argued that the number of states of the UAV 
camera may, in a sense, be infinite.  That is, the camera can be 
rotated into any directional state of a full circle.  However, 
most likely, any particular camera operator will be able to 
classify this multitude of rotational states only into a finite 
(and limited) number of categories.  Therefore, a finite-state 
formalism may be expected to provide an adequate description 
of the operator task.   
 The paper discusses how the formalism of finite-state 
machines can be used to objectively quantify cognitive work-
load involved in operating the UAV camera. 

 
INFORMATION TRANSMISSION IN THE UAV 

CAMERA TASK 
 
Any time a camera operator takes action to cause a par-

ticular camera operation, he faces an uncertainty of which 
input action should be chosen.  Given the present direction of 
the UAV camera and the location of the area to be scanned a 
particular camera operation is expected.  Only one of the four 
arrow keys (i.e., input symbols) can cause this camera opera-
tion (i.e., output symbol).  The amount of selective work re-
quired in performing the Camera Directory Task can be di-
vided into two stages.  First, the camera operator has to extract 
information from the task situation, that is, he has to map the 
task situation onto a camera operation.  Table 2 shows how 
sixteen different combinations of camera directions and object 
locations map onto six possible camera actions.  

Second, the camera operator has to decode the expected 
camera action into an input symbol (i.e., a camera operator 
action) to cause that particular action.  The decoding scheme 
that is appropriate here is the finite-state machine specified in 
Table 1.  Notice a difficulty factor involved in utilizing this 

finite-state machine as a decoding scheme.  Although for 
every combination of a state and an input symbol, one and 
only one output symbol can be observed, it is also true that a 
particular output symbol can be associated with more than one 
combination of state and input symbol.  

A natural formalism to express the amount of selective 
work that a situation requires is provided by Information The-
ory (Ash, 1965; Attneave, 1959; Krippendorf, 1986; Shannon 
& Weaver, 1949).  Information theory is concerned with a 
particular notion of information  -- selective information.  The 
notion of selective information builds upon the intuitive notion 
that the difficulty of identifying one particular member of a set 
is a function of the size of that set. 

Let the number of symbols of alphabet S be denoted by 
ns and let the relative frequency of symbol si be pi (0 ≤  pi ≤ 1).  
The uncertainty, or entropy, of a given alphabet is defined as 
H (S) = - ∑i pi  log2  pi.  The entropy of a variable is a measure 
of the variability for (numerical and) non-numerical variables. 
In the case of no variability, that is, an information source with 
a symbol s ∈ S with ps = 1.00, the entropy value necessarily 
results in H (S) = 0.b   

 

Table 2.   UAV camera actions given the present camera 
direction and location of object. 

Location Object/Area  Direction 
Camera n e s w 

N y+ r+ y– r– 
E r– x+ r+ x– 
S y+ r– y+ r+ 
W r+ x– r– x+ 

Note: the capital letters (N, E, S, W) represent the present directions of the 
UAV camera, the lower case letters (n, e, s, w) represent the locations of the 
object to be scanned.  The x’s and y’s represent changes over the X- and Y-
axis, respectively.  The output symbols r+ and r– denote clockwise and coun-
terclockwise rotations, respectively.    

 
Consider the set of task situations as an input alphabet, S 

                                                           
b  If ps = 1.00 then pi = 0.00 for all i ≠ s.  Note that 1 log2 1 = 0 
and Information theory has adopted the convention of 0 log2 0 
= 0.  
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= {Nn, Ne, …, Ww}, that is, the set of all possible combina-
tions of camera directions and object locations, and an output 
alphabet O as defined before.  Further, the process of extract-
ing information from the task situations is represented by a so-
called channel matrix [aij], aij = p (oj | si), i = 1, …, nS,  j = 1, 
…, no.  If S is a random variable taking the values s1, …, sM  
with probabilities p (s1), …, p (sM), then the output becomes a 
random variable.  The joint distribution of S and O is given by 
P{S = si, O = oj} = p (si) p (oj | si), i = 1, …, ns,  j = 1, …, no.  
The distribution of O is given by P{O = oj} = Σi p (s1) p (oj | 
si).  Thus, the specification of an input distribution leads quite 
naturally to a joint distribution and an output distribution.  
Following the definition of entropy, H (S), H (S | O), and H 
(O) can be calculated.  

The predictability of the output symbols, o ∈ O, given 
the set of input symbols, s ∈ S, is defined as information 
transmission.  The amount of information transmission may be 
expressed in several different ways that are mathematically 
equivalent (Krippendorff, 1986).  We adopt the conception 
that defines information transmission, T (S | O), as the differ-
ence between entropy perceived by the operator and that part 
of this entropy which is noise:     

 
T (S, O) = H (O) – H (O | S)   (2) 
 

where the entropy perceived by the operator is defined as the 
entropy of the set of output symbols, H (O), and H (O | S) de-
notes entropy in O given S. H (O | S) represents a measure of 
error, or noise in extracting the required camera action from 
the task situation. In the case of a perfect extraction process, 
there is a one-to-one mapping of the input symbols to the out-
put symbols and H (O | S) = 0, in which case T (S, O) = H (O).  
In the case of no reliable extraction at all, H (O) = H (O | S) 
and T (S, O) = 0.  

Throughout this paper it will be assumed that the infor-
mation extraction requirements in the Camera Directory Task 
are not beyond the processing capacity of the camera operator.  
Thus, the probability of error will be arbitrarily small in stage 
1, and therefore, it will be assumed that H (O | S) = 0, that is, 
output symbols o ∈ O are perfectly predictable from the input 
symbols s ∈ S.  Now, analyzing the outcomes of the decoding 
stage (i.e., the input symbols chosen by the operator) can as-
sess the degree of control of the UAV camera by the camera 
operator.       

Consider a two-way cross-classification table of expec-
ted symbols (i.e., e ∈ SE) by observed symbols (i.e., o ∈ SO). 
The set of expected symbols refers to the symbols required, 
given the camera directions and area locations that the opera-
tor encountered during task performance.  The set of observed 
symbols denotes the symbols actually chosen by the operator 
to cause these camera operations.  In this two-way cross-
classification, H (E) and H (O) represent the entropies of the 
expected symbols and observed symbols, respectively.  Notice 
that both the expected symbols and the observed symbols are 
elements of the same input alphabet (or, the same output al-
phabet).  

 
T (E, O) = H (O) – H (O | E)   (3) 
 

where H (O | E) represents a measure of error, or noise, in 
maneuvering of the UAV camera.  

Equation (3) can easily be extended to apply to a model 
in which a confusion matrix [bjk], with bjk = p(ok | ej), depends 
on a state qi, that is, a function describing the distribution of 
observed symbols o ∈ SO from the distribution of expected 
symbols e ∈ SE, given the state q ∈ Q.   Now, consider the 
transmission between O and E while Q is restricted to qi:   

 
T (E, O | qi) = H (O | qi) – H (O | E ∩ qi)  (4) 
 
The observation design corresponding with Equation (4) 

is an I × J × K cross-classification of states qi, i = 1, …, ni, 
expected symbols sj, j = 1, …, nj, and observed symbols ok, k = 
1, …, nk.  For each qi ∈ Q a two-way cross-classification of 
expected symbols and observed symbols can be generated and 
T (E, O | qi) can be computed.  The overall conditional infor-
mation transmission is the weighted average of these two-way 
statistics over Q, that is, T (E, O | Q) = Σi P(qi) T (E, O | qi). 

In the sequel of this paper we will present an experiment 
in which information transmission was analyzed as a function 
of angular disparity and time limits. 

 
METHOD 

Participants 
Participants were 173 US Air Force recruits at Lackland 

AFB ranging in age from 17 to 22 years selected randomly on 
the sixth day of their Basic Military Training.  They partici-
pated in the experiment as part of a routine assessment of cog-
nitive skills.     

 
Experimental Task 

The recruits participated in a Spatial Maneuvering Test 
(SMT).  In this test a monitor displays a 2-D grid of horizontal 
and vertical lines, and a triangular icon placed in the center of 
it.  The testee has to use the arrow keys to maneuver the icon 
toward a flashing light, occurring north, east, south, or west of 
the icon.  The structure of the task was identical to the finite-
state machine described in this paper.  The participants were 
randomly assigned to one of nine experimental conditions 
generated by a factorial design with two factors completely 
crossed.  The first factor will be dubbed MAIN AXIS.  This 
factor refers to the angular disparity between the main axis of 
the computer monitor and that of the grid.  MAIN AXIS had 
three levels, that is, zero degrees of angular disparity, 30 de-
grees and 60 degrees, respectively.  The icon was rotated in 
discrete units of ninety degrees (clockwise or counterclock-
wise).  Thus, the angular disparity of the icon with the Y-axis 
was 0, 90, 180 and 270 degrees in the first group, 30, 120, 210 
and 300 degrees in the second group, and 60, 150, 240 and 
330 degrees in the third group.  Per participant the order of 
presentation of the different angular disparity conditions was 
randomized.  Each subject did 10 trials per angular disparity 
condition.   

The second factor was TIME LIMIT, that is, the time 
available to accomplish a single trial.  This factor has three 
levels, 2 secs, 4 secs, and 6 secs.  
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 Procedure 

Participants were tested in groups of 40 at a time, with 
each participant at a randomly assigned computerized test sta-
tion. The SMT was preceded by a practice period of two min-
utes.  Testing time was approximately 10 minutes.  After 
completion of the SMT, participants were administered a test 
from the USAF Cognitive Ability Measurement battery. Then,  
a second block of 40 trials was presented to the participants. 
 
Results 
 To investigate whether the different time limits affected 
the amount of information transmission (T), we calculated T, 
aggregated over individual participants, for each of the twelve 
conditions of angular disparity within each time limit condi-
tion.  A repeated measures analysis of variance was performed 
with MAIN AXIS and TIME LIMIT as between-subjects fac-
tor and EXPERIENCE (block 1 versus block 2) and ROTA-
TION (0, 90, 180, and 270 degrees of disparity with the grid’s 
main axis) as within-subject factors.  The analysis indicated 
that EXPERIENCE did significantly effect performance (F (1, 
4) = 38.84, p < .01), but that it did not interact with any of the 
other experimental factors. TIME LIMIT did not reach a con-
ventional level of significance (F (2, 4) = .588, n.s.).  How-
ever, the power of the latter test was low (p <. 10).  Further-
more, the 2- and 4-seconds time limit conditions showed no 
evidence of a speed-accuracy trade-off.  Correlations between 
accuracy and response times per individual were non-
significant, both for the first block of trials and for the second.  
In the 6-seconds time limit condition these correlations were 
significant (i.e., r = -.407, and r = .-.364 (df = 38, p < .05) for 
block 1 and block 2, respectively).  This indicated a modest 
tendency to sacrifice accuracy for speed, or vice versa (be-
tween 13% and 16,5% of the performance variance) in the 6-
seconds time limit condition.   
 Based on these analyses we decided to treat the partici-
pants in  the different time limit conditions as being sampled 
from one single population and calculated T scores aggregated 
over all participants.  To investigate the stability of perform-
ance on the SMT, performance in the first and second block of 
trials was compared.  A one-sided paired t-test showed that 
performance improved with experience (t = -5.462, df = 11, p 
< .001), but that the pattern of information transmission over 
the various disparity conditions remained remarkably similar 
(r = .960, n = 12).    
 Subsequently, the SMT data were fitted to a series of 
related nonlinear models of the general form: 
 
 T = a + b × cos (c × θ + d) (5) 
 
where θ denotes the radians corresponding with the angular 
disparity (assessed by clockwise rotation), a denotes the inter-
cept, b the amplitude, c denotes the period of the cosine wave 
function, and d the X-axis shift parameter. The models were 
fitted to the data using the Levenberg-Marquardt estimation 
method.  The loss function to be minimized was the sum of 
squared residuals.  Success of the method depends on the 
choice of good starting values. 
 The initial hypothesis assumes that the amount of selec-
tive information is constant over the different orientations of 

the arrow.  Information loss, and thus information transmis-
sion, can differ per orientation because the processor’s proc-
essing capacity is partly depleted by the need to mentally ro-
tate (and sustain) a mental representation of the input-output 
mappings into that direction.  This hypothesis predicts infor-
mation transmission to be a function of the absolute value of 
the angular disparity between the present direction of the icon 
and the main axis of the computer monitor.  This model 
(model 1) constrains the values for the period (c) and shift 
parameter (d) at 1.00 and 0.00, respectively.  In this way, a 
perfect symmetry is predicted in the decrease of information 
transmission with a minimum amount of information transmit-
ted at 180 degrees of angular disparity.  A X2 test confirmed 
what visual inspection of the data already suggested, that is, 
that the data made this model very unlikely (i.e., X2

(10) = 10.65, 
p = .385; parameter values for a and b were estimated 0.888 
and 0.062, respectively). 
 The next plausible model (model 2a) embodies the hy-
pothesis that a different spatial operation takes over some-
where between 150 and 210 degrees of angular disparity: men-
tal flipping of the icon (or camera orientation).  Such a strat-
egy change can take place if a mentally flipping from 0 to 180 
degrees requires less workload than mental rotation.  This im-
plies that the mapping of output symbols onto input symbols is 
most difficult when the icon is rotated in a direction that is 
orthogonal to the computer monitor's main axis (i.e., 90 and 
270 degrees of angular disparity).  This model constrained the 
period parameter (c) at 2.00.  The parameter value of d was 
constrained at 0.00, the parameters a and b were treated as free 
parameters.  This model fitted the data considerably better 
(i.e., X2

(10) = 5.34, p = 0.861; R2 = 0.506, while the parameter 
value for a and b were estimated 0.888 and 0.247, respec-
tively).  A subsequent model (model 2b) differed from model 
2a in that the period parameter (c) was a free parameter.  Free-
ing the period parameter (c) did not really improve model fit 
(i.e., X2

(9) = 5.01, p = 0.834; R2 = 0.545).  The parameter esti-
mates for a, b, and c were 0.896, 0.257, and 1.918, respec-
tively.  We decided to accept model 2a as the best description 
of the observed data.    
   
Table 3.  Comparison of different model fits  

 X2 df p Δ X2 p 
model 2a1 11.36 12 0.497   
model 2a-a 6.79 11 0.816 4.57 0.03 
model 2a-b 10.84 11 0.457 0.52 n.s. 
1 model fit of model 2a on block 2 data 
  
 Subsequently, model 2a was fitted to the data of the sec-
ond block of trials (i.e., all parameter values were fixed at the 
values of model 2a). Thereafter, we removed the constraint 
from either the intercept parameter (model 2a-a) or the ampli-
tude parameter (model 2a-b).  This analysis showed that the 
learning effect in the data could be attributed to the intercept 
of the cosine wave function, rather than to the decreased am-
plitude (see Table 3).  
 

DISCUSSION 
 
 The initial hypothesis that information loss in the UAV 
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Krippendorff, K. (1986).  Information Theory.  Structural 
Models for Qualitative Data

camera task would increase as a function of the absolute value 
of the disparity between the present direction of the camera 
and the main axis of the computer, could not be confirmed.   
This suggests that mental rotation is not the mechanism or at 
least not the only mechanism by which input-output mappings 
are achieved.  Other spatial operations, in addition to rotation, 
could have been applied to facilitate the mapping of desired 
output actions to the input actions to cause them.  For exam-
ple, individuals could flip the orientation of the camera.  This 
mental operation would make the difficulty level of the 180 ± 
30 degrees angular disparity conditions more similar to the 0 ± 
30 degrees angular disparity conditions.  Model 2.a, which 
incorporated this idea provided a much better description of 
the data.  However, the model is most discrepant with the data 
between 150 and 210 degrees of angular disparity in both trial 
blocks (see Figures 1 and 2).  The data show a monotonous 
decrease in information transmission between 150 and 210 
degrees of angular disparity.  It is unclear what causes this 
phenomenon.   

.  London: Sage Publications. 
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Figure 2.  Information transmission as a function of angle of 
rotation (in radians) in the second block of trials. 
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Figure 1.  Information transmission as a function of angle of 
rotation (in radians) in the first block of trials. 
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